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Abstract

We present a general approach to obtain direct and inverse results for approximation in Hölder norms.
This approach is used to obtain a collection of new results related with estimates of the best polynomial
approximation and with the approximation by linear operators of non-periodic functions in Hölder norms.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In last years, there have been some interest in studying the rate of convergence of different
approximation processes in Hölder (Lipschitz) norms. The first one, due to A.I. Kalandiya [10],
was motivated by applications in the theory of differential equations. Some improvements were
obtained by N.I. Ioakimidis [9]. D. Elliot [8] gave other direct estimates. Later other papers were
devoted to analyze approximation of periodic functions. For more historical comments on this
subject we refer to [3].

The main subject of this paper is to present direct and converse results related with the best
approximation and with approximation by linear operators of non-periodic functions in Hölder
norms. This will be accomplished in the last section with the help of weighted moduli of smooth-
ness associated to the so-called Ditzian–Totik moduli of smoothness.

In Section 2, we develop a general approach to show how to construct Hölder spaces E�,�
associated to a given modulus of smoothness � on a Banach space E. Then, we introduce a
modulus of smoothness ��,� in this new space and characterize it in terms of an appropriated
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K-functional. In Section 3, we show how theorems concerned with approximation in the basic
space E can be used to derive similar ones in the Hölder spaces E�,�. We remark that we are
interested in applications of the abstract approach more than in a general theory in Banach spaces.
Of course other results can be derived from our approach, we only include some important ones.
This paper can be compared with [2] where approximation in Hölder norms is studied in the
periodical case. We remark that the results of [2] can be deduced from the approach given here.

In what follows the letter E will denote a real Banach space which norm ‖·‖E and W a linear
subspace of E with a seminorm | · |W .

2. Generalized Hölder spaces

There are different approaches to present generalized Hölder spaces. One of them assumes
that we have in hand a certain modulus of smoothness. This last notion can be replaced by a
K-functional when we are working with an abstract Banach space. In concrete examples one pass
from a K-functional to a modulus of smoothness by means of a theorem which asserts that both
notions are equivalent. There is a standard way to define what a K-functional is, but we cannot
say the same for the notion of a modulus of smoothness of a given order. Thus, we begin this
section by presenting a definition (convenient for our purposes) of a modulus of smoothness on
a Banach space.

Definition 1. A modulus of smoothness on E is a function � : E × [0, +∞) → R+ such that:
(a) For each fixed t ∈ (0, +∞), the function �(·, t) is a seminorm on E and for all f ∈ E,
�(f, 0) = 0; (b) For each fixed f ∈ E, the function �(f, ·) is increasing on [0, +∞) and
continuous at 0; (c) There exists a constant C > 0 such that for each (f, t) ∈ E × [0, +∞), one
has

�(f, t)�C ‖f ‖ .

Given a real r > 0, we say that the modulus � is of order r if N(E, �, r) �= Ker(�) and
N(E, �, s) = Ker(�) for all s > r , where

Ker(�) =
{

g ∈ E : sup
t �0

�(g, t) = 0

}

and

N(E, �, r) =
{
f ∈ E : sup

t>0

�(f, t)

tr
< ∞

}
.

To each modulus of smoothness � on E we associate some (generalized) Hölder spaces as
follows.

Definition 2. Given a modulus of smoothness � on E and a real � > 0, we denote ��,�(f, 0) = 0,

��,�(f, t) = sup
0<s � t

�(f, s)

s� and ‖f ‖�,� = ‖f ‖E + sup
t>0

��,�(f, t). (1)
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The Hölder space E�,� is formed by those f ∈ E such that ‖f ‖�,� < ∞ with the norm ‖f ‖�,�.
Moreover we denote

E0
�,� =

{
f ∈ E�,� : lim

t→0
��,�(f, t) = 0

}
.

Later we will prove that ��,� is a modulus of smoothness of order r − � on E0
�,� provided that

� is of order r. For the moment notice that Ker(��,�) = Ker(�). For completeness we recall the
notion of K-functional.

Definition 3. If E and W are given as above, the K-functional KW on E is defined for f ∈ E and
t �0 by,

KW(f, t) = inf {‖f − g‖E + t |g|W ; g ∈ W } .

If � is a modulus of smoothness of order r on E, we say that � and the K-functional KW are
equivalent if there are positive constants C1, C2 and t0 such that for f ∈ E and t ∈ (0, t0), we
have

C1�(f, t)�KW(f, tr )�C2�(f, t). (2)

Now we can state one of the main problems to be considered in this section. Given a linear
space E, a real r > 0, � ∈ (0, r) and a modulus of smoothness � of order r on E, characterize (1)
in terms of a K-functional.

Since our approach will be used in concrete situations, it can be assumed that we have some
additional information about �. In many cases the proof of (2) is obtained as follows. It is shown
that there exist positive constant C and t0 such that for any g ∈ W and t ∈ (0, t0],

�(g, t)�Ctr |g|W . (3)

Moreover for each t ∈ (0, t0], there exists a function Lt : E → W , such that for all f ∈ E,

‖f − Ltf ‖E �C�(f, t) and t r |Ltf |W �C�(f, t). (4)

Notice that if (3) holds, then W ⊂ E0
�,� (� ∈ (0, r)). This fact will be used below.

In what follows we write (E, W, Lt , �, r, �, t0) to assume that we have a Banach space E, a
linear subspace W of E (with a seminorm | ◦ |W �= 0), a modulus of smoothness � of order r on
E, and a family of functions {Lt } such that conditions (3) and (4) hold and � ∈ (0, r).

Theorem 4. If (E, W, Lt , �, r, �, t0) is given as above, then ��,� is a modulus of smoothness of
order r − � on E0

�,�. Moreover if g ∈ W and t > 0, then

��,�(f − g, t)�‖f − g‖�,� and ��,�(g, t)�Ctr−�|g|W
(where C is the constant given in (4)) and there exist positive constants D1 and D2 such that for
f ∈ E0

�,� and t ∈ (0, t0],
D1��,�(f, t)�K�,�(f, tr−�)�D2��,�(f, t), (5)

where

K�,�(f, t) = inf
{‖f − g‖�,� + t |g|W : g ∈ W

}
.
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Proof. If f, g ∈ E�,�, a ∈ R and t �0, we have

�(f + g, t)��(f, t) + �(g, t), �(af, t) =| a | �(f, t).

Therefore ��,�(f +g, t)���,�(f, t)+��,�(g, t) and ��,�(af, t) =| a | ��,�(f, t). On the other
hand

��,�(f − g, t) = sup
0<s � t

�(f − g, s)

s� � sup
s>0

�(f − g, s)

s� �‖f − g‖�,�.

Assume now that g ∈ W . Taking into account (3) we obtain

��,�(g, t) = sup
0<s � t

�(g, s)

s� �C sup
0<s � t

sr−�|g|W = Ctr−�|g|W .

Fix s > r − �. If f ∈ N(E�,�, ��,�, s), then ��,�(f, t)�Cf ts . Thus �(f, t)�Cf ts+�. This
says that f ∈ N(E, �, s) = Ker(�) = Ker(��,�). Hence N(E�,�, ��,�, s) = Ker(��,�). Finally,
if f ∈ N(E, �, r) \ Ker(�), then f ∈ N(E0

�,�, ��,�, r − �) \ Ker(��,�). We have proved that
��,� is a modulus of smoothness of order r − � on E0

�,�.
Fix f ∈ E0

�,�. For each g ∈ W ,

��,�(f, t) � ��,�(f − g, t) + ��,�(g, t)�C1
{‖f − g‖�,� + ��(g, t)

}
� C1

{‖f − g‖�,� + t r−�|g|W
}
.

Thus

1

C1
��,�(f, t)� inf

{‖f − g‖�,� + t r−�|g|W : g ∈ W
} = Kr,�(f, tr−�).

For the second inequality in (5) for each t ∈ (0, t0] we fix a function Lt : E → W which
satisfies (4). For s > t we obtain the estimates

�(f − Ltf, s)�C2‖f − Ltf ‖E �C3�(f, t)�C3s
���,�(f, s).

Let us find a similar estimate for s� t . Recall that for f ∈ E0
�,� and t ∈ (0, t0], Ltf ∈ W .

Therefore for s ∈ (0, t], we deduce from (3) and (4) that

�(Ltf, s)�C4s
r |Ltf |W = C4

( s

t

)r

t r |Ltf |W �C5

( s

t

)r

�(f, t).

Thus, since KW is a concave function and s� t � t0

�(Ltf, s)�C6s
r KW(f, tr )

tr
�C6s

r KW(f, sr )

sr
�C7�(f, s).

Now

�(f − Ltf, s)��(Ltf, s) + �(f, s)�C8�(f, s)�C8s
���,�(f, s).

Therefore

sup
s>0

�(f − Lt t, s)

s� �C8��,�(f, t).
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From the last inequality and (4) we infer that

‖f − Ltf ‖�,� �C9��,�(f, t)

and

t r−�|Lt t |W �C10
�(f, t)

t�
�C10��,�(f, t),

respectively. From this two last inequalities and the definition of a K�,� we have

K�,�(f, tr−�)�‖f − Ltf ‖�,� + t r−�|Ltf |�C11��,�(f, t). �

3. Best approximation and linear approximation in Hölder spaces

In this section, we assume that there is a sequence {An}∞n=0 of linear subspaces of E such that
An ⊂ An+1, dim(An) = n and ∪∞

n=0 An is dense in E.

Recall that for f ∈ E the best approximation of f by An is defined by

En(f ) = dist(f, An) = inf {‖f − h‖ : h ∈ An} .

Theorem 5. Let (E, W, Lt , �, r, �, t0) be given as in the previous section and suppose that, for
each n, An ⊂ W . For f ∈ E0

�,� let En,�(f ) be the best approximation of f (in E�,�) by An. If
there exists a constant C1 such that for each n, every g ∈ W and each h ∈ An one has

En,�(g)�C1
1

nr−� |g|W and |h|W �C1n
r−�‖h‖E, (6)

then there exist positive constants C2 and C3 such that for f ∈ E0
�,� and each n one has

C2En,�(f )���,�

(
f,

1

n

)
�C3

1

nr−�

n∑
k=1

kr−�−1Ek,�(f ). (7)

Proof. From the main results in [4] we know that there exist positive constants C4 and C5 such
that for every f ∈ E0

w,� and every n,

C4En,�(f )�K�,�

(
f,

1

nr−�

)
�C5

1

nr−�

n∑
k=1

kr−�−1Ek,�(f ).

Therefore the result follows from Eq. (5). �

When a good approximation on E is obtained by means of an operator with a shape preserving
property, then we can derive a direct-type result without using the first inequality in (6).

Theorem 6. Let (E, W, Lt , �, r, �, t0) be given as in the previous section and suppose that, for
each n, An ⊂ W . If there exists a constant D and a sequence {Hn} of functions, Hn : E → An

such that, for each f ∈ E,

‖f − Hnf ‖�D�

(
f,

1

n

)
and �(Hnf, t)�D�(f, t) (t > 0),

then for h ∈ E0
�,� the first inequality in (7) holds.
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Proof. If f ∈ E0
�,�, then for each n

‖f − Hnf ‖E �C1�

(
f,

1

n

)
�C1

1

n� ��,�

(
f,

1

n

)
.

On the other hand, for t �1/n

�(f − Hnf, t)

t�
�C2

1

t�
‖f − Hnf ‖E �C3

1

t�
�

(
f,

1

n

)
�C3��,�

(
f,

1

n

)

and, for t ∈ (0, 1/n),

�(f − Hnf, t)

t�
� �(f, t)

t�
+ �(Hnf, t)

t�
�C4��,�

(
f,

1

n

)
.

Therefore En,�(f )�‖f − Hnf ‖�,� �D4��,� (f, 1/n). �

Let us discuss some problems of approximation by linear operators in Hölder spaces. For the
inverse estimate we need a result analogous to a lemma of Berens and Lorentz in [1]. Since the
proof can be obtained with a modification of the one presented in [5, p. 312–313], we omit it.

Lemma 7. If 0 < � < 2, a ∈ (0, 1) and � is an increasing positive function on [0, a] with

�(0) = 0, then for � ∈ (0, 2−�) the inequalities �(a)�M0a
� and �(x)�M0

(
y� + (x/y)2−�

)
(0�x�y�a) imply for some C = C(�, �)

�(x)�CM0x
�, 0�x�a.

Theorem 8. Let (E, W, Lt , �, r, �, t0) be given as in the previous section and suppose that, for
each n, An ⊂ W . Let {Fn} be a bounded sequence of linear operators for which there exist
a constant C such that for each f ∈ E, every g ∈ W and all n, one has Fnf ∈ An and
|Fng|W �C|g|W . If for each f ∈ E and every n, one has ‖f − Fnf ‖�D�(f, �(n)), where
{�(n)} is a decreasing sequence which converges to zero, then there exists a constant D1 such
that, for every h ∈ E0

�,�, and each n

‖h − Fnh‖�,� �D1��,� (h, �(n)) . (8)

Proof. To obtain (8) we only need to verify that supt>0 t−��(h − Fnh, t)�C1��,�(h, �(n)). If
t > �(n), then

�(h − Fnh, t) � C1‖h − Fnh‖E �C2�(f, �(n))

� C2�(n)���,�(f, �(n))�C3t
���,�(f, t).

If t ∈ (0, �(n)], then �(h − Fnh, t)�C4(�(h, t) + �(Fnh, t)). Thus, it is sufficient to prove
that �(Fnh, t)�C5�(f, t). But

�(Fnh, t) � C6 inf
{‖Fnh − g‖E + t r |g|W : g ∈ W

}
� C6 inf

{‖Fnh − Lng‖E + t r |Fng|W : g ∈ W
}

� C7 inf
{‖h − g‖ + t r |g|W : g ∈ W

}
�C8�(h, t). �
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For approximation by linear operators different inverse results can be presented according to
the classification given in [6]. We only consider some of them.

Theorem 9. Assume the conditions given in theorem 8 with r = 2. If there exists a constant C
such that for each f ∈ E,

|Fnf |W �Cn2 ‖f ‖E and |Fng|W �C |g|W , (9)

then there exists a constant D1 such that for each couple of positive integers n and k and f ∈ E0
�,�

one has

��,�

(
f,

1

n

)
�D1

{
‖f − Fkf ‖�,� +

(
k

n

)2−�

��,�

(
f,

1

k

)}
. (10)

Moreover, if for � ∈ (0, 2 − �) and f ∈ E0
�,� there exists a constant Cf such that,

‖f − Fnf ‖�,� �Cf

1

n�/2
(11)

for each positive integer n, then there exists a constant Df such that

��,�(f, t)�Df t�. (12)

Proof. Fix g ∈ W and integers n and k. From the definition of K�,� and considering that Fkf ∈
W ⊂ E�,� and the inequality (5) we obtain that there exists a positive constant C1 such that

C1��,�

(
f, n−1

)
� K�,�

(
f, n�−2

)
�‖f − Fkf ‖�,� + n�−2|Fkf |W

� ‖f − Fkf ‖�,� + n�−2 (|Fk(f − g)|W + |Fkg|W)

� ‖f − Fkf ‖�,� + n�−2k2
(
‖f − g‖E + k−2|g|W

)
.

We consider that g ∈ W is arbitrary and use again (5), to infer that there exists a constant C2
such that

C1��,�

(
f, n−1

)
� ‖f − Fkf ‖�,� + (k/n)2−� k�KW

(
f, k−2

)
� ‖f − Fk‖�,� + C2 (k/n)2−� ��,� (f, 1/k) .

This proves (10).
The estimate (12) is obtained from Lemma (7) and Eq. (10). �

4. Approximation of non-periodic functions

In this section, we realize the abstract approach presented above in the case of continuous or
integrable functions defined on an interval of the real line. As before r is a fixed integer.

Here the letter I will always denote an interval of the real line and � an admissible function
in the sense of Ditzian–Totik (see [7, p. 8]). Recall that the function �(x) = √

x(1 − x), (
√

x,√
x(1 + x)) is admissible for the interval (0, 1) ((0, +∞)). For p ∈ [1, +∞), let Lp(I) we denote

the usual Lebesgue space with the norm ‖f ‖p = (∫
I
|f (x)|p dx

)1/p. For f ∈ Lp(I) and t > 0,
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the symmetric difference of order r , �r
hf (x), is defined by

�r
hf (x) :=

r∑
j=0

(−1)r−j

(
r

j

)
f
(
x +

( r

2
− j

)
h
)

if x ± rh/2 ∈ I and it is considered as 0 in any other case.
For an admissible function � the weighted (Ditzian–Totik) modulus of smoothness of order r

is defined by

��
r (f, t)p := sup

h∈(0,t]
‖�r

h�f ‖p.

Let W
p,r
� (I ) denote the space of all g ∈ Lp(I) such that, g is r − 1 times differentiable, g(r−1)

is absolutely continuous on each compact subinterval of I and ‖�rg(r)‖p < ∞. In W
p,r
� (I )

we consider the seminorm |g|p,r := ‖�rg(r)‖p. These notations are related to the ones consid-
ered in the previous section as follows Lp(I) = E, ��

r (f, t)p = �(f, t) and W
p,r
� (I ) = W

(Kr,�(f, t)p = KW (f, t)).
It is easy to verify that ��

r (f, t)p is a modulus of smoothness of order r in the sense we have
considered before. Thus for � ∈ (0, r) the Hölder space is well defined and we set lip�,r

p,�(I ) =
E0

�,�, ‖ ◦ ‖p,r,� = ‖ ◦ ‖�,�, ��
r,�(f, t)p = ��,�(f, t) and Kr,�,�(f, t)p = K�,�(f, t).

For the space C(I) of bounded continuous functions we obtain similar definitions by changing
the Lp norm by the sup norm. In this case, we use the last notations with p = ∞. In particular
L∞(I ) = C(I).

From the proof of Theorem 2.1.1 in [7] we have

Theorem 10. Fix 1�p�∞ and an admissible function � for I. There exist constants C and t0
and, for each t ∈ (0, t0] a function Lt : Lp(I) → W

p,r
� (I ) such that for f ∈ Lp(I), g ∈ W

p,r
� (I )

and h > 0,

‖�r
h�g‖p �Chr‖�rg(r)‖p, ‖f − Ltf ‖p �C��

r (f, t)p (13)

and

t r‖�r (Ltf )(r) ‖p �C��
r (f, t)p. (14)

Moreover, there exist constant C1 and C2 such that for t ∈ (0, t0] and f ∈ Lp(I)

C1�
�
r (f, t)p �Kr,�(f, tr )p �C1�

�
r (f, t)p. (15)

Now we can state a similar theorem for spaces of Hölder functions. We remark that for the first
inequality in (15) the restriction t � t0 is not needed.

Theorem 11. Fix � ∈ (0, r). Under the conditions of Theorem 10 there exist positive constants
D1, D2 and t0 such that for every f ∈ lip�,r

p,�(I ) and t ∈ (0, t0]

D1�
�
r,�(f, t)p �Kr,�,�(f, tr−�)p �D2�

�
r,�(f, t)p. (16)

Proof. We use Theorem 4. From (13) and (14) we know that conditions (3) and (4) hold. Then
(16) follows from (5). �
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Let �n denote the family of all algebraic polynomials of degree no greater than n. In order to
use the results of Section 3, we set �n = An, En(f )p = En(f ) and En,�(f )p = En,�(f ). We
first give a proof of the shape-preserving property needed in Theorem 6 and of the Bernstein-type
inequality needed in Theorem 5. We remark that the result of Theorem 12 is seen to be known.
Since it is important for us we include a proof.

Theorem 12. Fix 1�p�∞, a positive integer r and set �(x) = √
1 − x2 and I = [−1, 1].

For each n let Mn : Lp(I) → �n be a (non-linear) operator such that for each f ∈ Lp(I),
‖f − Mnf ‖ = En(f ). Then there exists a constant C such that for each f ∈ Lp(I) and every
n > r ,

��
r (Mnf, t)p �C��

r (f, t)p, t ∈ (0, 1/r].

Proof. From [7, p. 79, 84] we know that there exists a constant C1 such that (n > r)

En(f )p �C1�
�
r (f, 1/n)p and ‖�r (Mnf )(r) ‖p �C1n

r��
r

(
f,

1

n

)
p

. (17)

Recall that there exist constant D1, D2 and t0 such that for f ∈ Lp(I) and t ∈ (0, t0], Eq. (15)
holds.

Fix a positive integer n, f ∈ Lp(I) and t > 0. If t > 1/n, then

��
r (Mnf, t)p � ��

r (f − Mnf, t)p + ��
r (f, t)p

� C2‖f − Mnf ‖p + ��
r (f, t)p �C3�

�
r (f, t)p.

On the other hand, if t � min {1/n, t0}, then using (15) and (17) we obtain

��
r (Mnf, t)p � C4Kr,�(Mnf, tr )p �C4t

r
∥∥∥�r (Mnf )(r)

∥∥∥
p

� C5t
rnr��

r (f, 1/n)p �C6t
rnrKr,�(f, n−r )p

� C6Kr,�(f, tr )p �C7�
�
r (f, t)p ,

where we have used the fact that Kr,�(f, t)p is a concave function. From this we have the proof
for the case t � t0 (t �1/n). If t > t0 (t �1/n), then using (15) we have

��
r (Mnf, t)p � C8Kr,�(Mnf, tr )p �C8

t r

t r0
Kr,�(Mnf, tr0 )p

� C8
1

rr tr0
Kr,�(Mnf, tr0 )p �C9�

�
r (f, t0)p. �

Theorem 13. Set I = [−1, 1] and �(x) = √
1 − x2. Fix 0�p� + ∞, a positive integer r and

� ∈ (0, r). There exists a constant C such that, for any positive integer n and every P ∈ �n

‖�rP (r)‖p �Cnr−�‖P ‖p,�.

Proof. We present a proof for p < ∞. For p = ∞ similar arguments can be used. If P is
a polynomial of degree n, then dist(P, �n) = 0. Thus from the second inequality in (17) it
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follows that

‖�rP (r)‖p �C1n
r�r

�

(
P,

1

n

)
p

�C1n
r−���,�

(
P,

1

n

)
p

�C2n
r−�‖P ‖p,�,

where we have considered Theorem 4. �

Theorem 14. Set I = [−1, 1] and �(x) = √
1 − x2. Fix 0�p� + ∞, a positive integer r and

� ∈ (0, r). Then there exist positive constants C1 and C2, such that, for every f ∈ lip�,r
p,�(I ) and

all n > r

C1En,�(f )p �C1�r,�

(
f,

1

n

)
p

�C2
1

nr−�

n∑
k=1

kr−�−1Ek,�(f )p.

Proof. The first inequality follows from Theorem 6, Eq. (17) and Theorem 12. The inverse
inequality follows from Theorem 5, since we have verified the Bernstein-type inequality in
Theorem 13. �

Recall that for a real function f on [0, 1] the Bernstein polynomial is given by

Bn(f, x) =
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1 − x)n−k.

For these operators we consider the weight function �(x) = √
x(1 − x) and set E = C[0, 1] and

F = lip�,2
p,� [0, 1]∞.

For f ∈ L1 [0, 1] and a positive integer n the Kantarovich polynomial are defined by

Kn(f, x) = (n + 1)

n∑
k=0

(∫ (k+1)/(n+1)

k/(n+1)

f (s) ds

)(
n

k

)
xk(1 − x)n−k.

For these operator we consider the weight function �(x) = √
x(1 − x) and set E = Lp [0, 1]

and F = lip�,2
p,�[0, 1]p.

For f ∈ C∞ [0, +∞) and a positive integer n, the Szasz–Mirakyan operator is given by

Sn(f, x) = e−nx
∞∑

k=0

(nx)k

k! f

(
k

n

)
.

For these operators we consider the weight function �(x) = √
x and set E = C∞ [0, ∞) and

F = lip�,2
p,� [0, ∞)∞.

For f ∈ Lp [0, +∞) the operators of Szasz–Kantarovich are defined as

S∗
n(f, x) = e−nx

∞∑
k=0

(∫ (k+1)/(n+1)

k/(n+1)

f (s) ds

)
(nx)k

k! .

In this case we consider the weight �(x) = √
x and the spaces E = Lp [0, ∞) and F =

lip�,2
p,� [0, ∞)p.
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For f ∈ C∞ [0, +∞), the Baskakov operators are defined by

Vn(f, x) =
∞∑

k=0

f

(
k

n

)(
n + k − 1

k

)
xk(1 + x)−n−k.

In this case we consider the weight �(x) = √
x(1 + x) and set E = Cp [0, ∞) and F =

lip�,2
p,� [0, ∞)∞.
The Baskakov–Kantarovich polynomials are defined analogously. In this case we consider the

weight �(x) = √
x(1 + x) and set E = Lp [0, ∞) and F = lip�,2

p,� [0, ∞)p.

Theorem 15. Let {Fn} be the sequence of Bernstein (Kantarovich, Szasz–Mirakyan, Szasz–
Kantarovich, Baskakov) operators with the weight function � and the associated space E and
F be given as above where � ∈ (0, 2).

(i) There exist a constant C such that, for f ∈ F and each positive integer n

‖f − Fn(f )‖w,� �C��
2,�

(
f,

1√
n

)
p

.

(ii) For k�n one has

��
r,�

(
f,

1

n

)
�D1

{
‖f − Fkf ‖p,2,� +

(
k

n

)2−�

��
2,�

(
f,

1

k

)}
.

(iii) Fix � ∈ (0, 2 − �) and f ∈ F . There exists a constant Cf such that, for all n,

‖f − Fnf ‖p,2,� �Cf

1

n�/2

if and only if there exists a constant Df such that

��
2,�(f, t)�Df t�.

Proof. It follows from Theorem 9.3.2 in [7, p. 117] that,

‖f − Fn(f )‖p �C

{
1

n
‖f ‖p + ��

2

(
f,

1√
n

)
p

}
.

On the other hand, there exists a constant D such that, for any g ∈ W ,

‖�2F (2)
n g‖p �D2‖�2g(2)‖p

(see (9.3.7) in [7, p. 118]). Then the result follows from Theorem 8.
(ii) For the inverse result we only need to verify condition (9), that is the Bernstein type inequality

‖�2L
(2)
n f ‖p �Cn2‖f ‖p. But this last inequality is known (see Eq. (9.3.5) in [7, p. 118]).

(iii) It is a consequence of (i) and (ii). �
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